Deniable Upload and Download via Passive Participation

Aritra Dhar
ETH Zurich

David Sommer
ETH Zurich

Daniel Ronzani

Ronzani Schlauri Attorneys

Abstract

Downloading or uploading controversial information can put
users at risk, making them hesitant to access or share such
information. While anonymous communication networks
(ACNSs) are designed to hide communication meta-data, al-
ready connecting to an ACN can raise suspicion. In order
to enable plausible deniability while providing or accessing
controversial information, we design CoverUp: a system that
enables users to asynchronously upload and download data.
The key idea is to involve visitors from a collaborating web-
site. This website serves a JavaScript snippet, which, after
user’s consent produces cover traffic for the controversial
site / content. This cover traffic is indistinguishable from the
traffic of participants interested in the controversial content;
hence, they can deny that they actually up- or downloaded
any data.

CoverUp provides a feed-receiver that achieves a down-
link rate of 10 to 50 Kbit/s. The indistinguishability guaran-
tee of the feed-receiver holds against strong global network-
level attackers who control everything except for the user’s
machine. We extend CoverUp to a full upload and down-
load system with a rate of 10 up to 50 Kbit/s. In this case,
we additionally need the integrity of the JavaScript snippet,
for which we introduce a trusted party. The analysis of our
prototype shows a very small timing leakage, even after half
a year of continual observation. Finally, as passive partici-
pation raises ethical and legal concerns for the collaborating
websites and the visitors of the collaborating website, we dis-
cuss these concerns and describe how they can be addressed.

1 Introduction

Access to and distribution of sensitive and controversial in-
formation often comes at risk for users. Due to the risk of
being observed, users might be reluctant to download or up-
load certain content. Even if the content itself is end-to-end
encrypted, the fact that the user accessed a particular domain
or used an anonymity network might already indicate his in-

Luka Malisa
ETH Zurich

Esfandiar Mohammadi
ETH Zurich

Srdjan éapkun
ETH Zurich

terest in the particular content. Since Edward Snowden’s rev-
elations, we know that surveillance is mostly based on meta-
data, such as source and destination IP, timestamps, and the
size of the data [55].

Solutions like anonymous communication networks
(ACN) are designed to hide such meta-data. Despite that,
even the strongest ACNs in literature [73, 71, 40, 63] do
not protect against global network attackers and do not hide
users’ participation in the ACN, except for the brute-force
method of continuously producing artificial traffic [30]. This
participation in an ACN alone can appear suspicious. Par-
ticipation time can be used in long-term statistical disclo-
sure attacks to re-identify the user, thereby downgrading the
anonymity properties of an ACN [43, 44].

In this paper, we aim to solve this issue in the case of asyn-
chronous upload and download and therefore address the
following problem: how to allow users to safely download
and upload content without the fear of their intentions be-
ing identified. This problem is different from the more gen-
eral problem of anonymous communication. Namely, con-
tent upload and download is asynchronous, typically allows
for high latency, and is therefore much less vulnerable to tim-
ing correlations. Additionally, we aim to achieve a stronger
anonymity property: we require that the participation (time)
of users is protected.

Our approach to solving this problem is to draw in visitors
(Passive Participants) of highly accessed websites (the En-
try server) and trigger them via JavaScript to create cover
traffic to a controversial content server. Additionally, we
ensure that the passive participants’ traffic is indistinguish-
able from active participants’, who are genuinely interested
in downloading/uploading the content, thereby enabling de-
niable communication.

While prior work proposed the central idea of using
JavaScript-generated cover traffic for deniable communica-
tion [41, 65], these proposals left three main challenges un-
solved: (i) How to construct a downlink connection (using
the browser) that relays data to an external program with
minimal timing leakage. (ii) How to relay data from an ex-



ternal program to the uplink connection (using the browser)
with minimal timing leakage. (ii/) How long can such a sys-
tem be safely used before the timing leakage renders active
participants clearly distinguishable?

We address these three challenges. We design a system
(CoVvERUP) that asks visitors of an Entry server for their (in-
formed) consent to become passive participants and to pro-
duce cover traffic. We utilize this cover traffic to realize uni-
directional and bi-directional deniable communication chan-
nels. Our uni-directional deniable channel (CU:Feed) re-
trieves a message feed (Challenge (7)) from a content server
(the Feed server) and delivers it to the COVERUP-Tool, a
program that active participants would install. CU:Feed in-
volves an additional party (the COVERUP server) to which
the Entry server forwards active and passive participants.
This COVERUP server sends the participants a piece of
JavaScript code, which retrieves the feed from the Feed
server. Such message feeds are suited for the transmission
of information that a user does not want to be caught read-
ing (e.g., sensitive medical information or leaked documents.
We protect passive participants from potentially incriminat-
ing information by enforcing that a participant’s machine
never contains enough data chunks to reconstruct any incrim-
inating information from the feed. CU:Feed achieves deni-
ability against a global network-level attackers that controls
all parties except the user’s machine.

We extend CU:Feed to a deniable bi-directional channel
CU:Transfer, which enables data download from and data
upload to a content server, called the Transfer server. Ac-
tive participants install for CU:Transfer a browser extension
that implements an interface for bi-directional communica-
tion between the COVERUP-Tool and the Transfer server
(Challenge (ii)). CU:Transfer achieves deniability against
a global network-level attacker that controls all parties ex-
cept for the user’s machine, the COVERUP server, and the
Transfer server.

For both channels, we implemented a prototype that
carefully minimizes the timing leakage (Challenge (iii)).
The prototype includes an entry server, and the COVERUP
server that serves the JavaScript code. For active partici-
pants, we additionally provide the browser extension and the
CovERUP-Tool, which enable participants to interact with
the content servers (the Feed and/or the Transfer server). The
CoVERUP down- and up-link rate of our prototype is be-
tween 10 and 50 Kbit/s, depending on bandwidth overhead,
and the expected latency is 60 seconds.

We experimentally evaluate the timing-leakage of our pro-
totypes by measuring the differences in the traffic of active
participants and passive participants (Challenge (iii)). We
show that their traffic is hard to distinguish, and for half a
year of continual observation!, we can bound the attacker’s
advantage of distinguishing these usage patterns with 2 -

'We assume a usage pattern of at most 50 times a day, and at most 5
hours per day in total.

Passive session J S“rfl_l surf U_I_l surf I_.
Active session J ol I_, <ol I_, <ol I_.
|_|

Leakage
time

com com com

Figure 1: Hiding the participation time via passive participa-
tion. The x-axis is the time, and the y-axis show whether at
that time surfing or protocol-communicating behavior is expected.
Only communicating activity which is not covered by the expected
surfing behavior creates leakage. Active participants that produce
protocol-communication only produce leakage during time where
they would normally not surf.

Leakage w/o
Passive Part.

1073, i.e., the chance of successfully deciding whether a user
is active or passive is 50.001%.>

Summary of contributions.

e Design of uni-directional and bi-directional deniable
channels to a trusted server utilizing passive participation.

o Fully working prototype.

e Evaluation of the induced timing leakage for the distin-
guishability of active and passive participants.

e Discussion of ethical and selected legal questions w.r.t. the
entry server and the passive participants.

2 Problem description

The goal of this paper is to enable users to safely up- and
download content without the fear of their intentions being
identified. The concrete problem is to enable users to hide
their up- and download activities among traffic that is pro-
duced by other normal web users. This problem is different
from the more general problem of anonymous communica-
tion, as our goal is to utilize the traffic of normal web surfers.

2.1 Passive participation

One approach for utilizing the traffic of normal web surfers
of highly accessed websites (the entry server) is passive par-
ticipation: compel web surfers (passive participants) to cre-
ate cover traffic to the content server in a non-invasive man-
ner and such that their traffic is indistinguishable from active
participants (which are genuinely interested in download-
ing/uploading the content). As a result, active participants
can deny that they up- or downloaded any data during their
normal surfing time on the entry server websites, protecting
their participation time in the file-sharing protocol.

The degree of plausible deniability depends on whether
the active participants manage to let their surfing behavior

2This advantage is very low, since (in contrast to some usages of cryp-
tographic schemes) COVERUP is a system that has limited exposure. Thus,
an attacker cannot get arbitrarily many samples to amplify his or her chance
to guess correctly to a clear decision.



towards the entry server unchanged. For users that are will-
ing to make a paradigm shift, COVERUP offers strong guar-
antees. Instead of activating COVERUP whenever a deni-
able up- or download channel is needed, COVERUP gives
the highest degree of privacy if users let it run in the back-
ground. For asynchronous up- and downloads, COVERUP
can just up- and download opportunistically, whenever an
active participant is anyway visiting the entry server. More-
over, the wider COVERUP is deployed, the lower is the need
of a user to adapt its behavior to gain more throughput.
Even with imperfect behavior, this approach provides par-
tial cover and delays a potential detection. First, consider
the case where the browsing behavior of the active partici-
pants towards the entry server does not change. There, using
COVERUP can provide deniability for the act of utilization.
In contrast, a slightly altered user behavior leaks its differ-
ence to the unaltered behavior. However, this difference is
smaller than the full leakage without COVERUP, as connect-
ing directly to a service already reveals intention. Figure 1
illustrates this property by focusing on the participation time.

2.2 Challenges

We consider an attacker that controls the network but the
user’s machine and the Transfer server (the file server) are
honest, and a dedicated party (the COVERUP server) that
serves the protocol code for active and passive participants
as a JavaScript snippet is honest but curious. Even in the
presence of such an honest-but-curious COVERUP server and
an honest Transfer server, the browser’s processing time of
active and passive participants can potentially leak informa-
tion. This problem is amplified, since a network-level at-
tacker can change the TCP flag for timestamps and compel
the victim’s operating system to add OS-level timestamps to
the TCP headers [25]; hence, there is no hope of network-
noise blurring the timing leakage. This leads us to three ma-
jor challenges that we study in this work. (i) How to con-
struct a deniable downlink connection that relays data to an
external program with minimal timing leakage? (ii) How
to relay data from an external program to a deniable uplink
connection with minimal timing leakage. (iii) How long can
such a system be safely used before the timing leakage ren-
ders active participants clearly distinguishable?

2.3 Non-goals

In the problem area of passive participation, two challenges
remain that are out of scope of this work.
Behavior-changes towards the entry server. The usage
of COVERUP may unconsciously influence the behavior of
active participants, e.g. if active users spend more time on a
specific entry server in order to use COVERUP. We believe,
however, that these behavior changes do not cause a large
amount of leakage as COVERUP is meant for asynchronous

active passive
(1) connects to

participants participants

(5) extract feed

\
’ \\
/ to connect to \
CoverUp Tool s A%
\ J ) { & \

(5) extract feed M

(3) connects
clientsvia JS to

CoverUp Tool

(4) sends
r to

Feed Server

Figure 2: Main components of COVERUP for CU:Feed. All vis-
itors of an entry server are redirected to the COVERUP server, trig-
gered to send (dummy) requests to the Feed server, and then receive
an encoded piece of a uni-directional message feed (4), which is ex-
tracted (5) by active participants via the COVERUP-Tool.

up- and download of files; hence, it is less prone to timing
correlations (e.g., intersection attacks) than synchronous ap-
plications, such as messaging. As a consequence, the only
source of leakage would be users that keep the tabs longer
open in the background with COVERUP. Recent studies
show that many users keep tabs open in the background any-
way [54]; hence, COVERUP would not cause significant pri-
vacy leakage for these users. Properly understanding these
behavior changes requires a thorough user study, which is
out of scope of this work.

Browsing time of passive participants. Passive par-
ticipants potentially reveal their browsing behavior to the
COVERUP infrastructure, as a malicious server can read
HTTP header’s referrer field. While this leakage exists, we
would like to put it into perspective. Many popular websites
already leak this information to other services, such as adver-
tisement networks or external analytic tools, such as Google
Analytics. A deeper analysis of this leakage is out of scope.

3 CoVvERUP

Passive participation raises the challenge of utilizing passive
participants to produce cover traffic with unintrusive tech-
nologies while asking for not more than an informed con-
sent®> and while keeping the traffic of active and passive par-

3We discuss the challenges of an informed consent in Section 6.



ticipants indistinguishable. This section details how we over-
come these technical challenges and presents the system de-
sign of COVERUP. We split COVERUP into two parts based
on their features: a uni-directional broadcast-receiver chan-
nel and a fully bi-directional channel. We call them CU:Feed
and CU:Transfer respectively.

3.1 CU:Feed

The uni-directional channel CU:Feed implements a deni-
able feed-receiver for a feed that is broadcast by a dedicated
Feed server. CU:Feed triggers visitors (the passive partici-
pants) of cooperating websites (the entry server) to produce
cover traffic, after they give an informed consent. CU:Feed
leverages unintrusive widely-used JavaScript functionality of
browsers. For active participants, which are interested in
the feed, CU:Feed performs the same steps, but we addition-
ally provide the external application COVERUP-Tool. With
this application, the feed’s content can be extracted from the
browser’s cache. As active users are indistinguishable from
passive ones for all involved parties except their own ma-
chine, they cannot choose the feed they are listening to. In-
stead, the system constantly broadcasts its complete content
piece-wise to everyone. The entry server could be a univer-
sity, a knowledge, or a news site.
As illustrated in Figure 2, CU:Feed performs as follows:

(1) The user connects to the entry server. The entry server
embeds in its HTML-code an iframe to a dedicated
server (the COVERUP server) from a different domain.

(2) The COVERUP server responds with a JS code snippet.

(3) This JS snippet triggers the browser of the entry server’s
visitors to send requests to the Feed server.

(4) The Feed server responds with CU:Feed packets. This
effectively produces cover traffic to and from the Feed
server. The COVERUP JS snippet then stores the most
recent CU:Feed packet in the browser’s localStorage
cache, thereby overwriting the old one.

The passive participants of COVERUP stop here. The rest of
the protocol is only executed by the active participants.

(5) An active participant uses a previously obtained ex-
ternal application (COVERUP-Tool*) to extracts these
CU:Feed packets from the browser’s disk-based cache.

CU:Feed executes the same steps for active and passive
participants except that active participants additionally in-
stall COVERUP-Tool on their computer to extract the feed.
This makes the active and the passive participants indistin-
guishable to a network level adversary who does not compro-
mise a user’s system. As the CU:Feed has no strict latency
requirements, the browser behavior of active participants can

4CoVERUP-Tool could be obtained off-the-record or as part of the
CU:Feed. There, a small program including explanation could be distributed
in clear text and without any encoding which could be extracted from the
cache manually. This program assembles the full COVERUP-Tool delivered
by the encoded feed.

be kept exactly the same, thus avoiding timing leakage.

With regard to the privacy of participants, the JS snippet
from the COVERUP server is in an isolated context and thus
can not learn anything from other contexts (including the
page the iframe is embeeded in) due to the SAME-ORIGIN-
POLICY [8]. Hence, the COVERUP server can only learn
when a participant visited the entry server, by the requests.

The content of the Feed could be controversial. To deflect
potential legal harm to the passive participants, we crypto-
graphically protect them from accidentally storing meaning-
ful parts of the CU:Feed on their disc by utilizing an ALL-
OR-NOTHING SCHEME [64] and only storing one CU:Feed
packet in their localStorage. Without actively trying to,
passive participants do not have sufficient packets collected
to potentially reconstruct any content of the feed.

After applying the All-or-Nothing protection, we use
error-correcting FOUNTAIN CODE (see Section 4.1) on the
protected feed content. This splits the content in many pack-
ets and enables COVERUP-Tool to assemble these CU:Feed
packets in an arbitrary order and with potentially missing
packets, as the feed content might be too big for a single re-
quest. Thereby, the Feed server does not need to know which
packet has reached a user and in which order. As there is no
difference in feed packets for an active and passive partici-
pant, CU:Feed does not require TLS. The authenticity of the
feed can be achieved by signing the content, assuming a PKI.

Trust assumptions and attacker capabilities. The
CU:Feed is resistant against a global network-level active
attacker that controls all parts of the system except the ac-
tive participant’s hardware, operating system, and its run-
ning applications, as the only difference between active and
passive participants is COVERUP-Tool that reads browser’s
cache (localStorage). This attacker is active, so he can
modify, drop or delay any number of messages, which in-
cludes the creation of an arbitrary number of participants —
passive or active as individual participants are independent
of each other. As we focus on guaranteed anonymity and
not on integrity, COVERUP is not censorship resistant as it
cannot protect from denial of service.

3.2 CU:Transfer

We extend CU:Feed to CU:Transfer, which enables user to
upload content to and download content from a file server
(Transfer server). Active CU:Transfer participants have to
additionally install the COVERUP browser extension that es-
tablishes a channel to the external COVERUP-Tool, which
can be used to upload and download content.

The protocol of CU:Transfer is almost the same as
CU:Feed, except that users send (dummy) requests to the
transfer server in a predictable pattern. While passive partici-
pants solely transmit dummy data and receive CU:Feed mes-
sages, active participants of CU:Transfer additionally send
content messages whenever the user uses the system (Fig-



passive active
participants participant

e www

- Extension
-feed A
= s 9 |®

Z. 5 X Native

- E %’[MJ Messaging

Transfer
and Feed Server

Browser

ure 3, Step 1). In those cases, they use native messaging
to connect from the COVERUP-Tool to the browser exten-
sion (Step 2). The browser extension then replaces a dummy
CU:Feed request with a real message (Step 3). All messages
(Step 4) are sent over a secure channel. Hence, messages
of passive participants are indistinguishable from messages
of active participants for a network-level adversary. Upon
receiving the encrypted message (Step 5), the browser ex-
tension records it (Step 6), and sends it via native messaging
(Step 7) to the COVERUP-Tool which decrypts it (Step 8).

As aresult, both active and passive participants constantly
send requests to the Transfer server, and the Transfer server
responds with a constant-size data chunk; in particular, larger
files are sent in smaller chunks. In general, the Transfer
server does not need to be a centralized entity. Traffic sharing
solutions (content distribution networks) could be used.

CU:Transfer trust assumptions. CU:Transfer is resis-
tant against global network-level attacker that control all
parts of the system except for the active participant’s ma-
chine, the COVERUP server, and the Transfer server. The
COVERUP server has to be trusted because CU:Transfer re-
lies on the integrity of the JS snippet; otherwise an attacker
can inject malicious JS code that can detect active partici-
pants (e.g., by testing for the existence of the extension).
To enable the browser extension to check the integrity of the
JavaScript snippet with minimal timing leakage, we trust the
COVERUP server to be honest-but-curious for CU:Transfer
and the browser extension simply checks whether the origin
of the JavaScript code snippet is as expected. If the check
fails, the browser extension does not hijack any packets.

We trust the Transfer server, as it can distinguish active
and passive users based on their access pattern. Hiding ac-
cess patterns is a non-trivial problem. Current solutions ei-
ther require high communication complexity or are unsuit-
able for a bandwidth-limited multi-user setting [30, 69].

Relaxing trust assumptions. In the current implemen-
tation of COVERUP, we assume that the transfer server is
trusted. As a result, the transfer server can distinguish be-
tween active and passive participants. This can be mitigated

SModern browser claim to prevent any page-loaded JavaScript from
checking for installed WebExtensions unless the extension wants to reveal
itself. Specifically, any content-scripts run undetectable by page-loaded JS
in an isolated context [4] and any access to resources of an extension must
be allowed explicitly by the extension [19].

® response

CoverUp Tool

Figure 3: CU:Transfer in combination with CU:Feed. Once
the JS snippet has been received, all participants request
CU:Feed packets. An active CU:Transfer participant can use
the extension to replace these requests to the Transfer server
with custom requests. To render the traffic from passive and ac-
tive users indistinguishable, we use a secure channel at step 4
and 5, and at all connections by passive participants - in contrast
to CU:Feed. For CU:Transfer the dummy messages do not need
to contain feed content; they can also purely contain garbage.

using private information retrieval (PIR) methods such as the
one used in Pung [30], PIR-tor [60], pynchon gate [66] and
Riffle [53], or ORAMs such as PathORAM [69]. As most of
these techniques, however, are computationally expensive,
they significantly increase COVERUP’s overhead.

Alternatively, COVERUP can be used to strengthen
Anonymous Communication Networks (ACNs) by render-
ing a user’s participation time deniable. In this scenario, the
ACN takes the place of the transfer server. COVERUP only
achieves deniability if the ACN does not leak whether a mes-
sage is a dummy or a real message. As dummy messages do
not have a recipient, the ACN has to make sure that they
produce the same observable behavior as real user messages,
while each user (be it active or passive) receives dummy or
real messages according to a fixed distribution, e.g., a con-
stant sending rate. In particular, COVERUP enforces this
fixed distribution to ensure that the active participants’ traffic
patterns are predictable by the JS code.

The COVERUP server can be untrusted if the extension
checks the integrity of the JavaScript code byte for byte. This
would eliminate any costs associated with running such an
honest-but-curious COVERUP server, but the client-side tim-
ing leakage by such a solution would be significantly higher.

3.3 Timing leakage

Our design conceptually produces a timing leakage of active
participants, compared to passive participants. For assessing
the severity of the leakage, we characterize this timing leak-
age. This section discusses the timing leakage of our design,
i.e., independent of the implementation. Section 4.1 dis-
cusses and Section 5 measures our implementation-specific
timing leakage. As an active network-level attacker can acti-
vate the TCP timestamp-flag, we assume OS-level accuracy
for the timestamps [25].

In CU:Feed active participants need to run COVERUP-
Tool to extract information from the browser. While this ap-
plication is external to the browser and does not directly in-
teract with it, they share system-wide computation resources
and scheduling slots, which influences the browser’s com-
putation time. In CU:Transfer, the client additionally in-
stalls a browser extension and hence directly influences the
browser’s computation time. In both cases, the timing pat-
tern of the issued web requests is influenced (in the or-



1

1

! l¢ >le
IS I u T s
0 0 1

1

Uy Sy Uy 'S

> ! - —F
Tty o t,

iframe received
JS execution start

Figure 4: The timeline of an active or passive participant in the browser, starting at a request
to the COVERUP Server for a JavaScript code snippet from an iframe. The code is executed
and makes continuous requests to the Feed/Transfer server. The attacker can measure network
timestamps of the requests (D). To decrease the leakage s; of the system or browser internals, we
add randomly chosen delays u; to the sending times #;. There are two main sources of leakage:
the set-up of the iframe context (Loading) and the interval between the consecutive requests

u; = artificially added noise

t; = XMLHttpRequest.send() call
s; = system noise

¢; = computation inside the script
@ = time-stamp measurement

(Periodic). Any comprehensive computation c; inside the script or by the browser extension (for
active participants) is done between the sending intervals when all components are idle.

der of milliseconds) and this is noticeable by a network-
level attacker. While CU:Feed causes minor timing leak-
age, CU:Transfer causes significantly more timing leakage,
even though the processing of the active message is separated
from the critical sending part (¢; in Fig. 4).

This timing leakage cannot be countered by introducing
deterministic delays, as a JavaScript program cannot mea-
sure the processing time of the systems outside of its context.
Analogously, a JavaScript program cannot precisely enforce
a delay. Therefore, we introduce random delays and show in
Section 5 that these random delays significantly reduce tim-
ing leakage. To limit the amplification of the leakage, we ad-
ditionally limit the number of requests for which the browser
extension (of an active participant) is active. As we trust the
browser and the extensions operates in a global context, this
limit bounds the risk that malicious entry servers amplify the
leakage by triggering excessive amounts of page-loads.

Figure 4 illustrates all potential observations of a network-
layer attacker and the timeline of how messages are sent,
received, processed in the browser, and when random de-
lays (i.e., noise) are added. The system delay s; in this fig-
ure refers to the system’s computation time (including delays
caused by the OS, the browser, and the network card). Any
computation — and for CU:Transfer the communication with
the extension — takes place in ¢; with minimal interference.

In the rest of the paper, we concentrate on two time mea-
surements that an attacker can perform: i) Loading mea-
surements denote the time between the reception of the
JavaScript snippet from the COVERUP server and the first
outgoing request to the Feed/Transfer server, and ii) Pe-
riodic measurements denote the time between subsequent
CoVERUP requests to the Feed/Transfer server. For the
CU:Transfer case, Figure 5 shows distributions of timing de-
lays of active and passive participants for Loading and for
Periodic measurements, without adding delays. It illustrates
the importance of adding random delays; without these de-
lays, already the naked eye can distinguish the distributions.

Loading
@ B Active Participant
e = Passive Participant
>3
@
c <
8o
[aV}
o
O. o T
o r T T T T T T 1
5 6 7 8 9 10 11 12
time (ms)
Periodic
&
B Active Participant
8 = Passive Participant
>
=2
g o
[a
w
P R ———

-015 -010 005  0.00 0.05 0.10 0.15
time (ms)

Figure 5: Distribution of timing (without additional noise) of

Loading and Periodic measurements run on Linux. Each of the

graphs overlays the timing distributions of active and passive par-

ticipants. For the Periodic measurements, we substraced the expec-

tation value (it is centered around 0).

4 Prototype & performance

This section describes the COVERUP prototype implementa-
tion (available under http://coverup.tech) and presents
its performance. As the main purpose of the prototype is the
timing leakage evaluation, it solely contains a dummy feed
server and a dummy Transfer server.

4.1 Prototype implementation

Our prototype delivers a feed and the upload and download
system, for which we implemented a high-latency mailbox.



The COVERUP implementation consists of five components:
a COVERUP server, a central server that acts as the Transfer
server (in our prototype the mailbox server), the message re-
lay and the broadcaster, an external application (COVERUP-
Tool), a browser extension, and a short JS code snippet.
The COVERUP server and the Feed/Transfer server is im-
plemented as a Java Servlet running on an Apache Tomcat
web server. The external application is written in Java. The
browser extension is implemented for the Google Chrome
browser using the JS WebExtensions API. The COVERUP-
Tool and the server implementation consists of about 14
KLoC and the browser extension of about 200 LoC.

We make the following three assumptions about the
browser, which are in line with Chrome’s explicitly stated
security policies. 1. iframes are isolated, which we need
for the code integrity of COVERUP’s JS snippet. The parent
page of the iframe cannot modify the iframe if the iframe is
originated (domain) from a source other than the parent [6].
2. A JS code cannot read from or write to another context
of a different domain source without its consent. 3. The
JS code can write a small amount of data to the browser’s
localStorage cache and this cache cannot be accessed by an-
other JS code which originates from a different origin. This
property is known as the “same-origin-policy” [8], and all
modern browsers claim to enforce it.

CU:Feed. The message feed in CU:Feed is encoded
with a fountain code [57]. This encoding ensures that any
out of order threshold amount of broadcast packet can re-
cover the data successfully. Our prototype implementa-
tion uses an XOR based fountain code (for details see Ap-
pendix A.1). The JS snippet served by the COVERUP server
stores the fountain pieces in the cache database file (known
as browser localstorage). To minimize timing leak-
age, the COVERUP-Tool collects and assembles the fountain
pieces from the localstorage. Our implementation also
employs an All-or-Nothing-Encryption scheme (one similar
to [64]) which ensures that one needs threshold-amount of
pieces of the fountain (i.e. the entire source data) to de-
crypt it. The JS snippet only keeps one fountain piece in the
localstorage to ensure that the passive users do not have
any sensitive content on their disk in decipherable form.

CU:Transfer. CU:Feed’s extension CU:Transfer pro-
vides a up- and download channel for arbitrary data. The
secure channel is implemented using TLS. The messages are
of the same size and are transmitted at regular time inter-
vals. Beyond padding (dummy) messages with random data,
our prototype does not take additional measures against TLS
meta-data leakage.® The Transfer server uniquely identifies
a sender/receiver of an incoming request using the unique
SSL identifier without the overhead of sending an additional
identification token. Uniquely identifying senders/receivers
prevents session-hijacking attacks. For the mailbox protocol

There is work [61] that can prevent this leakage.

example, we assume a PKI, and we indexed the messages as
POP (post office protocol [26]) using curve25519 [34] public
keys (first 48 bits of the hashed public key). Whenever a new
message arrives from a source address, the Transfer server
assigns the message to the index of the destination address.
When a request arrives for the destination address, the Trans-
fer server delivers the message as the response and removes
the message from the previously kept index location. The
mailbox protocol assumes that an active participant added
all long-term public keys of all his trusted peers.

4.2 COVERUP performance

COVERUP is suitable to real-world scenario, is feasible for
deployment in large scale and does not incur an intolerable
overhead. This section estimates COVERUP’s overhead, la-
tency, and throughput. COVERUP has three adjustable sys-
tem parameters: request payload size, response payload size
and the average request frequency, the average requesting
rate for CU:Feed packets after adding random delays. In-
creasing the payload increases the traffic overhead for pas-
sive participants, and a lower request frequency leaves room
for higher random delays, thereby increasing privacy. Hence,
there is a trade-off between latency, privacy, traffic overhead,
and throughput. For our prototype, we choose system param-
eters (see Section 5 for more) such result in request/response
payload sizes between 75 KB to 375 KB, and in sending a
request every 60 seconds on average.

Computational overhead. The computational overhead
of COVERUP’s JS executed in the Browser is negligible. Our
implementation of the COVERUP-Tool takes around 50 MB
of main memory and less than 1% CPU time. Similarly, the
COVERUP browser extension incurs an almost unnoticeable
amount of memory and CPU consumption.

Traffic overhead. The traffic overhead of CU:Feed and
CU:Transfer is identical, as they are indistinguishable by de-
sign. The entry server’s overhead is minimal: only the size
of the iframe tag in its HTML code. The passive partici-
pants’ traffic overhead depends on the system parameters.
We based our estimation of the system parameters on the
Alexa top 15 news sites, in particular since the privacy im-
provements of COVERUP’s passive-participation-approach
depends on the entry server’s regular number of visitors. The
average main-page load-size of the Alexa Top 15 news sites
is around 2.2 MB and will grow in near future. A few ex-
amples are CNN (5.6MB), NYTimes (2.4MB), Huffington-
Post (6.1MB), TheGuardian (1.8MB), Forbes (5.5MB), BBC
(1.1MB), and Reddit (0.8MB).

CoOVERUP is parametric in the packet size. Once fixed,
the traffic overhead for the passive users is proportional to
this packet length. We generously assume a passive par-
ticipant that has a daily connected to the entry server for
5 hours each day. This participants would have 22MB (~
5'60-60s~&~75KB)t0 110 MB (~5-60~60s-ﬁ-375KB)



of data overhead per day and 660MB (= 30-22 MB) to 3.3
GB (= 30-110MB) per month. For landline data flat-rates
(i.e., for non-mobile visitors), 22 MB is not significant, e.g.,
in comparison to the traffic caused by streaming videos. We
envision a deployment of COVERUP not to include mobile
users. It may, however, be possible in the near future due to
the increased bandwidth of the mobile networks.

Latency & throughput. We evaluate the performance of
COVERUP for the duration that a tab is open, as the usage
of COVERUP is bound to the visiting patterns of passive par-
ticipants towards the entry server’s sites. Depending on the
entry-server’s service, it might be common to keep the tab
open (in the background) for a long time, to visit the site
very often, or to switch to another entry server if multiple are
available. COVERUP achieves 10 to 50 Kbits/s of throughput
(for packet size system parameter 75 to 375 KB) and a la-
tency of around 60 seconds on average between consecutive
messages. As the future Internet infrastructure will evolve
and website-size will increase, COVERUP’s packet sizes and
thus the throughput can be increased.

Scalability. For the participants, the workload of the
CoVERUP channel itself is independent of the number of
participants, and for the Transfer server the workload lin-
early increases. Hence, for the participants COVERUP scales
well, and for the Transfer server an infrastructure at the scale
of the entry server suffices, rendering COVERUP practical
with current infrastructure.

5 Timing leakage experiments

We have set up an experiment that measured the timing leak-
age. The experiments produced histograms that we use as
models to estimate the privacy leakage under continual ob-
servation. In the technical report [68], we rigorously prove
that it suffices to analyze the timing leakage.

5.1 Experimental set-up

We assume that the dominant part of the timing leakage will
be visible from the Loading and Periodic measurements, as
depicted by the orange arrows in Figure 4. In Loading mea-
surements, we force the iframe to refresh on the entry server
page in the browser. In the corresponding TCP dump, we
measure the timing difference between the response of the
initial iframe HTML source request and its first (“passive”)
request to the Feed/Transfer server. This forces to load the
extension’s content script and thus captures any distinguish-
ing feature (any timing delay added by the existence of the
browser extension) produced by the extension.

The Periodic measurements model the scenario where
the active and passive participants load the iframe once,
followed by JavaScript generated periodic requests to the
Feed/Transfer server and their response. In the network traf-
fic dump, we look for the timing difference for two contigu-

ous CU:Feed/CU:Transfer requests from the browser. Sec-

tion 5.5 discusses the choice to concentrate on these mea-

surements. For both cases, we compare the timing measure-
ments of a passive participant and an active participant.

To simulate realistic scenarios, we set up the passive and
both kinds (CU:Transfer and CU:Feed) of active participants
on 12 identical systems running Windows 10 and Ubuntu
16.04 (both x86-64 and in dual-boot configuration) equipped
with an Intel Core i15-2400 3.1 GHz CPU and 8 GB of main
memory. Additionally, the COVERUP and a dummy imple-
mentation of a Feed/Transfer server run as an Apache Tom-
cat web server instance on a separate machine in the same
sub-net connected by a 10 Gbps switch.

All the communication between the server and the browser
are executed over a local Gigabit Ethernet network. We use
tshark [28] to capture the network traffic on the participant’s
network interface. We captured 3.8 million measurements
in total. The experiments are conducted on these set-ups to
investigate the timing leakage of the browser, produced by
COVERUP’s browser extension and the COVERUP-Tool.

Reflecting the attacker model. Our attacker model (Sec-
tion 3.1), a network-level attacker, is reflected in our experi-
ments by capturing the traffic on the corresponding network
interface. As an active network-level attacker can change
the TCP flag for timestamps and compel the victim’s operat-
ing system to add timestamps to the TCP headers [25], the
attacker does to gain strength by our setup where all partic-
ipants, the COVERUP server, and the Feed/Transfer server
are in the same GigaBit Ethernet switched network. We
measured that the accuracy of the added OS-time-stamps is
4000us for Linux, and 400us for Windows, respectively.

Test modes. We emulate three different user scenarios
by using combinations of the browser extension and the
CoVERUP-Tool. We use Google-Chrome browser v57.0
to run our extension which exchanges messages with the
CoVERUP-Tool. The three test modes include:

1. Passive participant: Google chrome with no extension
and no COvERUP-Tool running.

2. Active CU:Transfer participant: Google Chrome with
the extension installed and the COVERUP-Tool running
which communicates with the aforementioned browser
extension by the native messaging interface.

3. Active CU:Feed participant: Google chrome with
no extension and COVERUP-Tool running assembling
CU:Feed chunk from the browser localStorage.

These are repeated for both Loading and Periodic measure-

ments (they are described in Section 5.3).

Interfering processes. Additionally we constructed one
user profile in Linux to understand how the execution of
other browsing tabs influences the timing leakage. To
demonstrate a simple profile we additionally open another
tab in the Google Chrome which is running a 720p video in
a loop (see Figure 9).

Data sanitization. Our test setup was unstable with fre-



quently freezing machines (e.g., networkcard stopped work-
ing and power outages). We repeatedly ran the same set-up;
hence, we expect the measurement-chunks generated from
the same machine to be fairly consistent. While we kept sig-
nificantly represented outliers, we measured 150 widely scat-
tered outliers in 3 million measurements. These outliers are
too few to be representatives of real effects. However, such
widely scattered outliers distort our timing leakage analysis,
since in theory real outlier effects that only happen in one
configuration heavily amplify privacy leakage.

We removed these unrepresentative, scarcely scattered
outliers to extract a representative model of the underlying
response-delay distributions. To minimize the bias of the
model, we dismissed entire batches of 6h measurements-
blocks if they contained clear outliers w.r.t. the rest of the
(sub-)histograms for the same scenario, e.g., periodic active
participants. As a result, we dismissed 20% of all measure-
ments, leaving us with 3 million measurements.

5.2 Adding random delays

CoVERUP introduces random delays to reduce the tim-
ing leakage. To accelerate testing and increase accu-
racy, our experiments send requests at fixed intervals omit-
ting the random delays. In COVERUP, the delays are
chosen from a Gaussian distribution A{5, (4, 6) with
mean U and standard-deviation’ ¢ = %u, restricted to
the interval [0,2u], and add this delay to the minimum
delay of one second. The expected delay is therefore
E [1 + Mopu (L= 1,0= %,u)] =14 u. We artificially
added delays after the measurements by convolving the re-
sulting histograms with a gaussian distribution.® We exper-
imentally confirmed that separately adding the delays (see
Appendix B) does not significantly distorts our model.

5.3 Estimating the advantage

Our goal is to provide an upper bound on the advantage
for the task of distinguishing active and passive participants.
This section explains the estimators that we use. We assume
that the dominant part of the timing leakage will be visi-
ble from two kinds of measurements: Loading and Periodic
measurements, as depicted by the orange arrows in Figure 4.

To quantify the timing leakage we use a quantitative vari-
ant of statistical indistinguishability of two distributions. For
a pair of distributions X,Y and a random sample either from
X or from Y, statistical indistinguishability requires that no
attacker can tell whether the sample was chosen from X or

TThere is no specific reason for this o, but we wanted to prevent hard
noise-distribution cut-offs as they increase J,.

8If we view the histogram as the probability mass function (pmf) for
the timing delays, convolving this pmf with a gaussian distribution the his-
togram corresponds to addition of the corresponding random variables, i.e.,
adding the noise within the experiment.

from Y with more than an advantage §, which can be rep-
resented as follows: §(X,Y) := 3 ¥ ca(|lpx(a) — py(a)]).?
Specifically, n collected observations amounts to considering
On x,y} := O(X",Y") for the product distributions X", Y.

The advantage quantifies an attacker’s success in dis-
tinguishing active from passive participants after n ob-
servations, while having perfect knowledge of underlying
response-delay distributions of the active and passive par-
ticipants of type type € {loading, periodic}. Therefore, we
write 5n7,ype for the estimator for the attacker’s advantage.

Our analysis relies on three assumptions.  First, all the
measurement samples are independent. Second, Loading
and Periodic measurements are independent. Third, the mea-
sured distributions accurately represent the underlying dis-
tributions. We believe that the first two assumptions hold
in a deployed system because we assume a very high wait-
ing time between requests (around 60s). The third assump-
tion is of theoretical nature. While we conducted extensive
measurements (around 3 million measurements in total) to
render the model more representative, such measurements
can only result in an approximation of the underlying pro-
cesses. Using standard composition results (see Appendix
Lemma 1), these assumptions enable us to bound the advan-
tage of COVERUP with total,; := Oy loading 1+ Om,periodics
after attacker that makes n Loading observations and m Peri-
odic observations for either Linux or Windows.

Under these assumption we use the Privacy-Buckets-
tool [59] 010 compute 5n,laading and Sn,periodic from 51,Ioading
and &y perioaic (for Linux and Windows, respectively), which
we get from the sanitized measurement-histograms.

5.4 Timing leakage results

This section plots the results of our timing leakage estima-
tion. For our evaluation, we over-approximate the connec-
tion pattern to the entry server with at most 50 site-loads and
at most 5 hours of left-open tabs (in the background) of vis-
ited entry servers per day. We consider an attacker that is
able to continuously collect such data for half a year, i.e., 7
days a week for 26 weeks. We assume that the usage pattern
of an active participant is identical to that of passive partici-
pants (see Section 5.5 for a discussion on visiting behavior).
We stress that the our analysis also applies to a continuous
observation over 2.5 years for users that only make 10 site-
loads at the entry server per day and are connected for at
most 1 hour per day to the entry server.

Latency vs timing leakage. Fixing the observation time
to half a year and the connection pattern as described above,
Figure 6 plots how total, , increases with decreasing de-

9This advantage is also known as fotal variation or statistical distance
and is connected to the classification-accuracy: acc = (§/2) +0.5.

10A publicly available numerical tool that computes a provable upper
bound for the advantage under continual observation of a given pair of dis-
crete distributions.



& < —_ 3 y

101 2 A5 \V?ndows Feed

] —— Windows Transfer
<

s

< 1072 =

2 10

N

o

£ 1073 < .

§ — - Linux Feed

B 1041 — Linux Transfer o=

1
2 4 8 16 32 64 128 256
expected delay [s] (log-scale)

Figure 6: Latency versus advantage (upper bounded) for obser-
vation of half a year, with at most 5 hours of visiting the entry
server (Periodic-observations) and at most 50 connecting to the en-
try server (Loading-observations) per day.

lays. Looking at the graph, we recommend 60s expected de-
lay as system parameters to achieve an overall advantage of
less than 2- 1073 after 6 months of continual measurements
of the user’s timing patterns with daily 50 Loading observa-
tions and daily 5 hours worth of Periodic observations. We
stress that despite the limits of our evaluation, the bounds
that we present are highly over-approximated: we assume a
global network-level attacker that has very precise informa-
tion about the state of the system such as which processes
are running and how they influence the measurements.
Observation-length vs timing leakage. The next angle
is the length of the observation versus the degree of privacy:
Figure 7. We fix the expected latency to 60s and plot for
an increasing number of observations the functions 0, joading
and O, periodic- This graph lets us study different usage be-
haviors. E-mail service, such as Google mail or Hotmail, as
an entry server, e.g., would lead to significantly longer ses-
sions than e-commerce entry servers. E-mail services would,
hence, lead to less Loading and more Periodic observations.
This graph shows that the leakage grows at most linearly
with the number of observations. While Loading needs more
time in Linux for the CU:Transfer (presumably because it
invokes the extension each time), it produces less Periodic
leakage while running. The graphs show that in many cases
the Feed produces more timing leakage than Transfer. We
believe this discrepancy to be an artifact of the experiments.
We nevertheless included these measurements in our analy-
sis because we could not confidently exclude them.
Distorting effects of concurrent activities. The experi-
ments of which we saw the results so far do not let any other
program run in the background but doing so alters the his-
togram significantly. For further details see Appendix C.

5.5 Limits of our evaluation

This section discusses the limits of our evaluation of the leak-
age. While we do not claim that our evaluation offers prov-
able bounds for the timing leakage of COVERUP, we believe
that it captures the dominant part of the leakage of COVERUP
and is a good indicator of the privacy that COVERUP offers.

5-107* = ——- Windows Feed

—— Windows Transfer | Periodic e

4-107% -
0 —-- Linux Feed P

3.10~% — —— Linux Transfer

attacker’s advantage

= T T T T T
0 10000 20000 30000 40000 50000
number of observations

Figure 7: Leakage over time. The attacker’s advantage (y-axis,
upper bound) over the number of observations (x-axis) for Periodic
and Loading leakage with a 60s expected delay. The right end of
the x-axes correspond to 3 years of observation.

Pairs of requests. We stick to pairs of requests since the
autocorrelation is low and exploring all possible combina-
tions for a higher number of contiguous requests increases
the number of required measurements exponentially. To re-
duce potential effects from longer sequences of contiguous
requests, we incorporate into our recommended delays a
minimum of 1s between pairs of requests.

Unnoised measurements. We accelerated our measure-
ments by not adding any additional noise, as we want to eval-
uate COVERUP with different amounts of noise. During the
analysis phase, we introduce noise by computing the convo-
lution of the resulting histograms with ideal Gaussian noise.
To justify this we additionally construct an experiment with
two scenarios: one with added artificial noise and another
without where we add the artificial noise after the samples
are collected. Figure 8 in Appendix B shows the timing dis-
tributions with total variation 1.8%.

Experimenting with real users. Evaluating our method
against profiling attacks that are designed to detect whether a
particular extension or a specific application is running [38]
are out of scope of this work. Additionally, we do not evalu-
ate COVERUP with real users to evaluate other aspects of the
system such as reaction of passive participants, e.g., usage
time of both the active and the passive users.

Neglecting the sampling error. Our experiments are lim-
ited to 3 million measurements. Hence, the histograms that
we analyze do not exactly represent the underlying distri-
bution. As our timing-leakage-bounds are computed on the
histograms, they are not hard bounds but rather bounds that
hold with high confidence.



6 Ethical, legal & deployment considerations

“Passive” participation has to be carefully implemented to
avoid ethical and legal issues.We address potential ethical
and legal considerations that stem from triggering visitors of
some webpage into passively participating in a system like
CoVERUP. Our work received formal approval of our Insti-
tutional Review Board (IRB).

Even consenting passive participants that have been in-
formed can experience unexpected consequences, e.g., by
misunderstanding the consequences or by accidental con-
sent. We are aware of the difficulties of informing web-
site visitors in a way that they do not ignore the message
and understand the consequences of consenting. Prior re-
search [62, 33] suggests that the risks of misunderstanding
and of agreeing by accident can be minimized, e.g. deny by
default [29] and consenting in two phases, and highlight the
network/battery-activities.

Are computation and bandwidth resources of passive par-
ticipants unwittingly utilized? No, only after an informed
consent does COVERUP turn an entry server visitor to a pas-
sive participant; hence utilizing the computation and band-
width resources. Passive allocation of resources is nothing
unexpected for a visitor of a webpage; it is regularly done
by advertisements or QoS scripts, such as Google Analyt-
ics. Webpages that incorporate COVERUP would, hence, not
cause unexpected behavior on a visitor’s browser. The com-
putational overhead of COVERUP is negligible and the band-
width overhead for a visitor is around 20.25 MB per day (for
a throughput of 10 Kbit/s), which is negligible compared to
the data load of video streaming services.!!

Does COVERUP violate a participant’s system-security?
No, COVERUP uses standard browser functionality.

Does COVERUP store potentially incriminating data on
the machine of passive participants? No, we carefully in-
corporated an All-or-Nothing scheme such that passive par-
ticipants never contain any useful information on their ma-
chine, as long as they do not actively extract and collect the
CoVERUP data packets from the browser’s local storage.

Does COVERUP trigger passive participants to open po-
tentially suspicious connections or connections that are
detrimental for its reputation? After an informed consent,
CoVERUP does trigger a connection to the Feed/Transfer
server (or an ACN), which some parties (e.g., an employer)
could indeed view as suspicious or damage a passive par-
ticipant’s reputation. We propose to mitigate this risk by
only opening the connection after its nature was explicitly
described and an informed consent was received.

Does the COVERUP server collect information about the
browsing behavior of the entry server’s visitors? No, while
each iframe request of every entry server’s visitor includes

"We expect this bandwidth overhead to become an even smaller fraction
of a user’s normal Internet traffic as connectivity improves and commercial
websites continue to increase the amount of data that they sent.

the visitor’s IP address, an uncompromised COVERUP server
does not collect or store this information in any form.

Who would volunteer to become passive participants? We
carefully minimized the costs!? and risks for passive partic-
ipants, which minimizes the hurdle for visitors of the entry-
server to altruistically support COVERUP. If the sense of ur-
gency for hiding meta-data increases in the future and people
are willing to pay for an ACN service, it is also possible to
financially reward each entry-server visitor that consents to
becoming a passive participant in COVERUP.

Which parties would benefit from deploying COVERUP?
Apart from the normal beneficiaries of ACNs (e.g., whistle-
blowers, journalists or political activists), COVERUP is use-
ful for government agencies that want to hide their agents’
tracks by using an ACN. This usefulness for government
agencies could could help with COVERUP’s deployment.

Legal considerations for passive participants. We care-
fully designed COVERUP such that the legal risk for pas-
sive participants is minimized. Even if illegal information is
distributed via the feeds, the AON scheme ensures (cf. Sec-
tion 3.1) that no information is ever reconstructible by an
honest passive participant. Additionally, as COVERUP is not
primarily designed for the purpose of committing a cyber-
crime offense (in the legal sense). As solely standard browser
functionality is utilized, receiving the COVERUP JS snippet
is not a legal offense.

Legal considerations for the entry server. The JavaScript
code is provided by a third party; hence, the entry server (its
provider respectively) has no knowledge about the content.
The liability for content of linked pages has been intensively
debated in the past years. The liability of internet service
providers has been debated intensively in the past years. Un-
der EU and US legislation and case law, a provider’s liability
privilege should apply to the entry server. As a result, the
entry server should not be held liable for the JavaScript code
and thus the content of the feed. For CU:Transfer, the entry
server plays an even less significant role than a chat service
provider; hence, the entry server is less liable than any chat
service provider (e.g., WhatsApp) for chat-content.

Appendix D has a thorough discussion of legal topics.

7 Related work

Extending the anonymity set via JavaScript. There are
previous research works on utilizing visitors of a collab-
orating website to produce anonymizing cover traffic via
JavaScript. Conscript [41] and Adleaks [65] describes up-
load only uni-directional channel from the users to the mix
network. In contrast, COVERUP provides a private bi-
directional transport channel. Conscript mentioned timing
leakage based side channel attacks but evaluation details are

12To further improve usability, a cookie can remember previous choices
for consenting to support COVERUP as a passive participant.



missing except power consumption. Conscript additionally
has deployment hurdles, since it trusts the entry server to
achieve code integrity. While previous work suggests mit-
igating this trust assumption by letting the extension check
all dynamic content to achieve code integrity against a ma-
licious entry server, such dynamic checks will tremendously
increase the timing leakage, and thus rendering the active
participants clearly distinguishable from passive ones. The
need to trust the entry server gives the entry server more
responsibility and requires a careful evaluation of the entry
servers. The implementation of Adleaks requires a patched
version of the browser. This reduces the set of possible
browsers and therefore reduces the anonymity set massively.
Detailed privacy analysis is not described in the paper includ-
ing timing leakages. The paper [32] describes how to include
unwilling users to cover server to server communication. All
transport between the servers (by passive clients) is not en-
crypted. This means an inspection of the HTTP body reveals
intention. Moreover, the paper lacks any implementation de-
tails. Additionally, previous works lack a legal aspects dis-
cussion of “passive” participation.

Anonymous uploads and downloads. While COVERUP
at its core provides a bi-directional transport channel on
which ACNs could run, COVERUP has distinctly other
goals than traditional ACNs or systems like Pung [30]:
CoVERUP’s goal is to enable users to hide their traffic in
the traffic of normal web surfers, i.e., to extend the potential
anonymity set to normal web surfers.

Covert channels & steganography. Covert channels hide
whether communication took place, and thus achieve full
deniability. As covert channels typically use a piggyback
approach to transport data, they depend on existing data
streams, resulting in a dependency of the piggybacked sys-
tem for latency and throughput. Steganography is another
approach which is hiding messages in unsuspicious looking
data [52, 45, 31]. But once detected, the origin, thus the
intention, is obvious. The same applies to Mixing [56]. Oft-
the-record messaging publishes the MAC key after each talk,
rendering it vulnerable against real-time monitoring [35].

McPherson et al. proposed CovertCast, a broadcast hid-
den in normal video streams like YouTube [58]. Che et
al. were able to create a deniable communication channel
based on different levels of noisy channels [39]. Deploying
that system is, however, require a much higher effort by the
service provider (e.g., YouTube) and does not provide any
interactive communication like COVERUP. Freewave [50]
provides a covet channel where the user can modulate his
internet traffic signal into acoustic data and transfer it to a
remote server via VoIPs such as Skype. Such system has
bandwidth limitation and is vulnerable to attacks described
in [49]. SWEET [51] describes a covert channel e-mail com-
munication where the user can send the query to the remote
server by using any available mail server. Such system suf-
fered from inherently very low bandwidth and high latency,

making them practically infeasible for deployment. Cloud-
Transport [37] introduced covert communication which in-
volves publicly accessible cloud servers such as Amazon S3
which acts as the oblivious mix. However, such services do
not provide protection against attackers learning intention.
Infranet [46] describes a system executing covert commu-
nication using image stenography, but it also suffers from
inherently low bandwidth.

Censorship circumvention. There exist several censor-
ship circumvention tools that allow users to reach websites
which are otherwise unreachable due to local policies. Flash
Proxies [47] provides a browser-based proxy that connects
to a tor bridge. Its implementation uses WebSocket and
JavaScript to create many, generally ephemeral bridge IP ad-
dresses, effectively surpassing the censor’s ability to block
them. It is now outdated and replaced by Snowflake [27]
which is a Tor pluggable transport [22] with a design princi-
ple identical to Flash Proxies. Other pluggable transports
such as Tor’s meek [20] relay data through a third-party
server that is hard to block, for example a CDN, using a
mechanism called domain fronting [48]. COVERUP is or-
thogonal to the aforementioned papers. COVERUP does not
provide any form of censorship circumvention, as the censor
can disable COVERUP by blocking all requests to the entry
server, the COVERUP server, or the feed/Transfer server.

8 Conclusion

We discussed how the concept of passive participation can
improve the privacy of accessing information in an anony-
mous and deniable manner. By drawing in passive partici-
pants to create cover traffic, we achieve participation deni-
ability: an attacker cannot tell whether an observed request
to a Feed/Transfer server originates from a active participant
which is interested in its content, or from a passive partici-
pant which is only surfing on the entry server.

We leverage this concept with COVERUP, which can op-
erate in two modes: CU:Feed, distributing an uni-directional
broadcast, and CU:Transfer, providing a deniable up- and
download channel. Given our implementation, we exper-
imentally evaluated the degree of privacy COVERUP can
guarantee. For both, CU:Transfer and CU:Feed, we found
that the timing leakage is acceptable (an advantage under
2-1073) within a half a year of continual observation. Even
for a state-level agency a half a year of continual observation
(on sub-ms-level granularity) incurs a significant cost.

The present analysis clearly shows that the passive-

participation-approach can provide sufficient cover. We con-
clude that research on passive participation is a promising
direction for deniable communication.
Acknowledgements: This work has been partially sup-
ported by the Zurich Information Security Center (ZISC).
We thank the anonymous reviewers for their helpful com-
ments.



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

17 u.s. code para. 512. https://www.law.cornell.edu/uscode/
text/17/512.

America’s founding documents — national archives. https://www.
archives.gov/founding-docs.

Chart of signatures and ratifications of treaty 185. http://tinyurl.
com/h8ketgj.

Chome  scripts -  google  chrome. https://
developer.chrome.com/extensions/content_scripts#
execution-environment.

Consolidated version of the treaty on the functioning of the european
union. http://eur-lex.europa.eu/resource.html?uri=
cellar:41f89a28-1fc6-4c92-b1c8-03327d1blecc.0007.
02/D0C_1&format=PDF.

Content security policy (csp) - google  chrome.
https://developer.chrome.com/extensions/
contentSecurityPolicy.

Convention on cybercrime, budapest, 23.xi.2001. http://www.

europarl.europa.eu/meetdocs/2014_2019/documents/
libe/dv/7_conv_budapest_/7_conv_budapest_en.pdf.

Cross origin xmlhttprequest - google chrome. https://developer.
chrome.com/extensions/xhr.

Directive 2000/31/EC of the European Parliament and of the Council
of 8 June 2000 on certain legal aspects of information society services,
in particular electronic commerce, in the Internal Market (’Directive
on electronic commerce’), 2000 O.J. L 178.

Directive 2002/22/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX :32002L0022&from=EN.

Directive 2002/58/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:32002L0058: en:PDF.

Directive 2009/136/ec of the european parliament and of the coun-
cil.  http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=0J:L:2009:337:0011:0036:en:PDF.

Directive 95/46/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:31995L0046&from=EN.

Eur lex. http://eur-1lex.europa.eu/legal-content/EN/
ALL/?7uri=0J%3AC%3A2012%3A326%3ATOC.

European convention on human rights (ehcr). http://www.echr.
coe.int/Documents/Convention_ENG.pdf.

Federal constitution of the swiss confederation.
//www.admin.ch/opc/en/classified-compilation/
19995395/index.html.

https:

Fourth amendment. https://www.law.cornell.edu/
constitution/fourth_amendment.

Katz v. united states, 389 u.s. 347 (1967). https://supreme.
justia.com/cases/federal/us/389/347/case.html.

Manifest: Web accessable resources - google chrome.
https://developer.chrome.com/extensions/manifest/
web_accessible_resources.

meek: Tor bug tracker and wiki. https://trac.torproject.org/
projects/tor/wiki/doc/meek.

Olmstead v. united states, 277 u.s. 438 (1928). https://supreme.
justia.com/cases/federal/us/277/438/case.html.

Pluggable transports. https://trac.torproject.org/
projects/tor/wiki/doc/PluggableTransports.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Regulation (ec) no 2006/2004 of the european parliament and of
the council. http://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/7uri=CELEX:32004R2006&from=EN.

Regulation (ec) no 2006/679 of the european parliament and of
the council. http://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/7uri=CELEX:32016R0679&from=en.

Rfc 7323 - tcp extensions for high performance. https://tools.
ietf.org/html/rfc7323.

Rfc 918 - post office protocol. https://tools.ietf.org/html/
rfc918.

Snowflake.  https://trac.torproject.org/projects/tor/
wiki/doc/Snowflake.
tshark-the wireshark network analyzer 2.0.0.  https://www.

wireshark.org/docs/man-pages/tshark.html.

AcCQUISTI, A. Nudging privacy: The behavioral economics of per-
sonal information. IEEE Security Privacy (2009).

ANGEL, S., AND SETTY, S. T. Unobservable communication over
fully untrusted infrastructure. In OSDI (2016).

ARTZ, D. Digital steganography: hiding data within data. /EEE In-
ternet computing 5, 3 (2001), 75-80.

BAUER, M. New covert channels in http: Adding unwitting web
browsers to anonymity sets. In Proceedings of the 2003 ACM Work-
shop on Privacy in the Electronic Society (2003), WPES ’03.

BEAUDOUIN-LAFON, M. Designing interaction, not interfaces. In
Proceedings of the Working Conference on Advanced Visual Inter-
faces, AV ’04.

BERNSTEIN, D. J. Curve25519: New diffie-hellman speed records.
In Public Key Cryptography - PKC 2006 (2006), M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, Eds.

BONNEAU, J., AND MORRISON, A. Finite-state security analysis of
otr version 2, 2006.

BOYKO, V. On the security properties of oaep as an all-or-nothing
transform. In Annual International Cryptology Conference (1999),
Springer, pp. 503-518.

BRUBAKER, C., HOUMANSADR, A., AND SHMATIKOV, V. Cloud-
transport: Using cloud storage for censorship-resistant networking. In
International Symposium on Privacy Enhancing Technologies Sympo-
sium (2014).

CA0, Y., L1, S., AND WIIMANS, E. (Cross-)Browser Fingerprinting
via OS and Hardware Level Features. In NDSS 2017.

CHE, P. H., BAKSHI, M., AND JAGGI, S. Reliable deniable commu-
nication: Hiding messages in noise. In Information Theory Proceed-
ings (ISIT), 2013 IEEE International Symposium on.

CORRIGAN-GIBBS, H., BONEH, D., AND MAZIERES, D. Riposte:
An anonymous messaging system handling millions of users. In S&P
2015.

CORRIGAN-GIBBS, H., AND FORD, B. Conscript Your Friends into
Larger Anonymity Sets with JavaScript. In WPES 2013.

DAEMEN, J., AND RUMEN, V. The design of Rijndael: AES-the
advanced encryption standard. 2013.

DANEZIS, G., AND SERJANTOV, A. Statistical disclosure or intersec-
tion attacks on anonymity systems. In Information Hiding.

DANEZIS, G., AND SERJANTOV, A. Statistical disclosure or inter-
section attacks on anonymity systems. In International Workshop on
Information Hiding (2004), Springer, pp. 293-308.

EGGERS, J. J., BAEUML, R., AND GIROD, B. Communications
approach to image steganography. In Security and Watermarking of
Multimedia Contents IV (2002), vol. 4675, International Society for
Optics and Photonics, pp. 26-38.



[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

FEAMSTER, N., BALAZINSKA, M., HARFST, G., BALAKRISHNAN,
H., AND KARGER, D. R. Infranet: Circumventing web censorship
and surveillance. In USENIX Security Symposium (2002).

FIFIELD, D., HARDISON, N., ELLITHORPE, J., STARK, E., BONEH,
D., DINGLEDINE, R., AND PORRAS, P. Evading censorship with
browser-based proxies. In Privacy Enhancing Technologies (2012),
Springer Berlin Heidelberg.

FIFIELD, D., LAN, C., HYNES, R., WEGMANN, P., AND PAXSON,
V. Blocking-resistant communication through domain fronting. Pro-
ceedings on Privacy Enhancing Technologies (2015).

GEDDES, J., SCHUCHARD, M., AND HOPPER, N. Cover your acks:
Pitfalls of covert channel censorship circumvention. In PCCS 2013.

HOUMANSADR, A., RIEDL, T. J., BORISOV, N., AND SINGER,
A. C. I want my voice to be heard: Ip over voice-over-ip for un-
observable censorship circumvention. In NDSS (2013).

HOUMANSADR, A., ZHOU, W., CAESAR, M., AND BORISOV, N.
Sweet: Serving the web by exploiting email tunnels. [IEEE/ACM
Transactions on Networking (TON) 25, 3 (2017), 1517-1527.

KAMBLE, M. P. R., WAGHAMODE, M. P. S., GAIKWAD, M. V. S.,
AND HOGADE, M. G. B. Steganography techniques: A review. In-
ternational Journal of Engineering (2013).

KWwON, A., LAZAR, D., DEVADAS, S., AND FORD, B. Riffle. Pro-
ceedings on Privacy Enhancing Technologies (2016).

LABAJ, M., AND BIELIKOVA, M. Tabbed Browsing Behavior as a
Source for User Modeling. In User Modeling, Adaptation, and Per-
sonalization (2013).

LANDAU, S. Making sense from snowden: What’s significant in the
nsa surveillance revelations. IEEE Security Privacy (2013).

LE BLOND, S., CHOFFNES, D., ZHOU, W., DRUSCHEL, P., BAL-
LANI, H., AND FRANCIS, P. Towards efficient traffic-analysis resis-
tant anonymity networks. In ACM SIGCOMM Computer Communi-
cation Review (2013).

MACKAY, D. J. Fountain codes. IEE Proceedings-Communications
152, 6 (2005), 1062-1068.

MCPHERSON, R., HOUMANSADR, A., AND SHMATIKOV, V.
Covertcast: Using live streaming to evade internet censorship. Pro-
ceedings on Privacy Enhancing Technologies (2016).

MEISER, S., AND MOHAMMADI, E. Tight on Budget? Tight Bounds
for r-Fold Approximate Differential Privacy. In Proceedings of the
25th ACM Conference on Computer and Communications Security
(CCS) (2018), ACM.

MITTAL, P., OLUMOFIN, F. G., TRONCOSO, C., BORISOV, N., AND
GOLDBERG, I. Pir-tor: Scalable anonymous communication using
private information retrieval. In USENIX Security Symposium (2011),
p.- 31.

NIKITIN, K., BARMAN, L., UNDERWOOD, M., AND FORD, B.
Reducing metadata leakage from encrypted files and communication
with purbs. arXiv preprint arXiv:1806.03160 (2018).

PATRICK, A. S., AND KENNY, S. From privacy legislation to inter-
face design: Implementing information privacy in human-computer
interactions. In Privacy Enhancing Technologies (2003), R. Dingle-
dine, Ed.

PIOTROWSKA, A. M., HAYES, J., ELAHI, T., MEISER, S., AND
DANEZIS, G. The loopix anonymity system. In 26th USENIX Security
Symposium, USENIX Security (2017), pp. 16-18.

RIVEST, R. L. All-or-nothing encryption and the package transform.
In Fast Software Encryption (Berlin, Heidelberg, 1997), E. Biham,
Ed., Springer Berlin Heidelberg.

ROTH, V., GULDENRING, B., RIEFFEL, E., DIETRICH, S., AND
RIES, L. A Secure Submission System for Online Whistleblowing
Platforms. In FC 2013.

[66] SASSAMAN, L., COHEN, B., AND MATHEWSON, N. The pynchon
gate: A secure method of pseudonymous mail retrieval. In Proceed-
ings of the 2005 ACM workshop on Privacy in the electronic society
(2005), ACM.

[67] SHOKROLLAHI, A. Raptor codes. IEEE/ACM Transactions on Net-
working (TON) 14, SI (2006), 2551-2567.

[68] SOMMER, D., DHAR, A., MOHAMMADI, E., RONZANI, D., AND
CAPKUN, S. Deniable Upload and Download via Passive Participa-
tion. Cryptology ePrint Archive, Report 2017/191, 2017.

[69] STEFANOV, E., VAN DK, M., SHI, E., FLETCHER, C. W., REN,
L., YU, X., AND DEVADAS, S. Path ORAM: an extremely simple
oblivious RAM protocol. In CCS 2013 (2013).

[70] SUNDARARAJAN, J. K., SHAH, D., AND MEDARD, M. Arq for
network coding. In ISIT 2008.

[71] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M., AND ZELDOVICH,
N. Vuvuzela: Scalable private messaging resistant to traffic analysis.
In Proceedings of the 25th Symposium on Operating Systems Princi-
ples (2015).

[72] WEBER, R. E-Commerce und Recht, 2. Auflage. 2010.

[73] WOLINSKY, D. I., CORRIGAN-GIBBS, H., FORD, B., AND JOHN-
SON, A. Dissent in numbers: Making strong anonymity scale. In
OSDI (2012), pp. 179-182.

A Constructions

In this section we describe existing tools and techniques that
have been used in our proposed system COVERUP.

A.1 Fountain Code

Fountain codes [57, 70] are a class of forward error correc-

tion (FEC) codes with the following properties

e Arbitrary sequence of encoding symbols can be generated
form a given set of source symbols i.e., input data.

e Original source symbols can be recovered from any subset
of encoding symbols with size more than a threshold value
T.

e Encoding symbols can be delivered regardless of specific
order.

e Fountain codes does not show fixed code rate.

In this paper, we have used a bit-wise X0R (6) based foun-
tain code with error detection mechanism.

In a simple analogy, one can consider an empty glass for
water. A fountain emits the input data encoded in a large
amount of droplets in a steady stream. Anyone can collect
them in a glass alternately and if one thinks the glass is filled
enough, one may try to assemble the data from the water
(data stored in the glass). If the amount of droplets is insuffi-
cient to reassemble the data, one has to wait longer to collect
more droplets and retries later.

Our specific fountain code implementation is not optimal.
There exists efficient fountain codes such as Raptor [67] in
the literature but most of them are protected by intellectual
property rights.



A.2 All-or-nothing transformation

All-or-nothing transformation is an encryption mode in
which the data only can be decrypted if all the encrypted
data is known. More precisely: “An AONT is an un-keyed,
invertible, randomized transformation, with the property that
it is hard to invert unless all of the output is known.”[36].

We modified the all-or-nothing scheme proposed by
Rivest [64] which encrypts all data with a symmetric key
cryptography algorithm (in our implementation, we use
AES-128 [42]) in Cipher Block Chaining (CBC) mode and
appends a new block in which the encryption key is XOR’ed
() with the 128 bit truncated SHA-256 hashes of all the en-
crypted blocks. This guarantees that one needs all encrypted
data (or at least its hash) to extract the decryption key from
last block.

1. Input message block: my, mo, ..., m,
2. Choose random key ¢ & {0, 1}128 for AES-128.
3. Compute output text sequence mj, mj, ..., M, My, as
follows:
o Let m; = Enc( ,mj)Viel,... nwith CBC
mode.

o Let m{(ey =X DOhhOhy®...Dhy,
where h; = (1, ..., 128]; 7% =SHA-256(m;) Vi €
1,...,n
e Sendm’ = mj||...||mj|[mi,
The receiver can recover the key % only after receiving
all message blocks. He executes the following steps

. J/:m{(ey@hl@hz@...@hn.
e m; = Dec(# ,m)Viel,... n

B Independence of additional noise

Recall that we simulated the additional noise by adding it
to the measurement result. To justify this procedure, we con-
ducted separate experiments, similar to the periodic scenario,
but instead of waiting 1000ms for the next droplet request,
we drew in JavaScript a uniformly distributed random num-
ber (using Math.random()) and expanded it in an affine way
such that an interval ranges from 200ms to 1800ms. Addi-
tionally, we stored each of the drawn random numbers to-
gether with an epoch time stamp. Later in the analysis step,
we subtracted the corresponding random number from the
network dump measurement. This procedure produced mea-
surements artifacts, caused by the time resolution of our sys-
tem (which lies slightly under lus). As we are only inter-
ested in the fact whether artificially adding the noise after the
experiment is independent of directly adding the additional
noise in the experiments, we clustered close histogram bars
that are not separated by a significant gap. Figure 8 shows
the resulting distribution. The statistical distance of these
two distributions is 1.8% which is an acceptable value.

No Noise added

.0

~0.30 -0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12 0.18
ms

Noise added in JavaScript subtracted

0.0
-0.30 -0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12 0.18
ms

Figure 8: Statistical Independence using uniform noise: Distance:
1.8%

Linux Loading

—— Active (Transfer)
Passive

—— Active Video (Transfer)

----- Passive Video

occurence probability

T

T
4 5 6 7 8 9 10 11 12
delay [ms]

Figure 9: Different computation loads lead to different timing dis-
tributions. In the blue video plots, Google Chrome additionally
renders a high definition (720p) video in a separate tab. Loading
measurement. No randomly chosen delays added.

C Impact of concurrent activities

The experiments of which we saw the results so far do
not let any other program run in the background. In con-
trast, Figure 9 overlays the histogram of the vanilla exper-
iments (without any other programs running in the back-
ground) and experiments where the browser is rendering a
720p video on Linux. The experiments are conducted with
Loading observations, as those produce more leakage. We
can clearly see that rendering the video has some impact on
the measurement (red line vs. blue line in Figure 9). Hence,
it will be hard for an attacker to get such clean measure-
ments like those that we use in our evaluation. This is an-
other reason why we have some confidence that our privacy
bounds give a good impression of the degree of privacy that
CoVERUP can offer, and maybe even provide a significant
over-approximation.



D Selected legal questions

One of the challenges in answering the question whether the
provision of COVERUP and the upload of the JavaScript code
by the entry server is legal or not (and many other questions
evolving around the use of the Internet) is that, whereas the
Internet functions globally, law mostly [7] remains limited
by territory because sovereign states put their own legisla-
tion into effect [5, 14, 2]. The legal provisions and possible
offenses that apply to the technical setup of COVERUP, dif-
fer from country to country. Moreover, as law is not an exact
science and definite legal statements are made by the courts,
we conclude the legal discussion herein with an assessment
that we consider probable.

Many countries enforce their own laws and have their own
(territorial) jurisdiction, many countries, among others the
EU member states and the USA, have ratified [3] in the Con-
vention on Cybercrime [7] (CCC) — the international treaty
on crimes committed via the Internet and other computer net-
works. This international treaty criminalizes, among others,
illegal access (Art. 2 CCC), data interference (Art. 4 CCC),
and misuse of devices (Art. 6 CCC).

D.1 Passive participants

Illegal access. Illegal access (Art. 2 CCC) penalizes the en-
tering of a computer system but does not include the mere
sending of an e-mail message or a file to a system. The ap-
plication of standard tools provided for in the commonly ap-
plied communication protocols and programs is not per se
“without right”, in particular not if the accessing application
can be considered to have been accepted (e.g. acceptance of
cookies [12, 10, 11, 23] by client). However, a broad inter-
pretation of Art. 2 CCC is not undisputed (refer [7], §44 -
50).

Upon request, the entry server delivers a webpage that
contains an iframe request for the COVERUP server, which
then delivers the JavaScript to the browser for the download
of the packet. Not only does the entry server merely send
a file (pointer) to the browser, but the request to download
the JavaScript from the COVERUP server is standard browser
functionality for communication. The same would happen if
the entry server were financed by online advertising: upon
request the entry server would deliver a webpage pointing to
the advertising server and trigger the download of the adver-
tising text or pictures to the browser. As this is a standard
online process, we conclude that even in a broad interpreta-
tion of Art. 2 CCC, the provider of the entry server should
not be illegally accessing the browser.

Data interference. Data interference (Art. 4 CCC) pe-
nalizes the damaging, deletion, deterioration, alteration, or
suppression of computer data “without right”. This provi-
sion protects a computer device from the input of malicious
code, such as viruses and Trojan horses as well as the result-

ing alteration of data. However, the modification of traffic
data for the purpose of facilitating anonymous communica-
tions should in principle be considered legitimate protection
of privacy (refer [15, 17, 21, 18], [13, Recitals(1) and (35)]),
[16, Art. 13], and, therefore, be considered as being under-
taken “with right” [7, §61].

CoOVERUP does not damage, delete, deteriorate, or sup-
press data on the participant’s client. However, it does alter
the data on the hard disk: on the one hand the webpage with
the iframe uses disk space and thus modifies the participant’s
data; on the other hand COVERUP triggers the download of
the JavaScript code and subsequently the packets from the
ACN to the passive participant’s browser, which again uses
disk space and thus modifies the data anew.

However the explanatory report to the Convention on Cy-
bercrime foresees that the file causing data interference be
“malicious”. Code is malicious if it executes harmful func-
tions or if the functions are undesirable.

As concluded above, the JavaScript code utililized stan-
dard core browser functionality. Thus from a technical view-
point, COVERUP is not harmful. Therefore in our view the
provider of the entry server not does cause any malicious
data interference. We advocate that Art. 4 should not ap-
ply to the provision of the webpage with the iframe by the
provider of the entry server.

Misuse of devices. Misuse of devices (Art. 6 CCC) pe-
nalizes the production, making available, or distribution of a
code designed or adapted primarily for the purpose of com-
mitting a cybercrime offense, or the possession of such a
computer program. It refers to the commission of “hacker
tools”, i.e. programs that are e.g. designed to alter or even
destroy data or interfere with the operation of systems, such
as virus programs, or programs designed or adapted to gain
access to computer systems. The objective element of of-
fense comprises several activities, e.g. distribution of such
code (i.e. the active act of forwarding data to others), or mak-
ing code available (i.e. placing online devices or hyperlinks
to such devices for the use by others) [3, §72].

One of the main questions relating to the misuse of devices
is how to handle dual use devices (code). Dual use means in
our case that the JavaScript code could be used to download
legal content, e.g. political information, as well as illegal
content, e.g. child pornography. Should Art. 6 CCC only
criminalize the distribution or making available of code that
is exclusively written to commit offenses or should it include
all code, even if produced and distributed legally? Art. 6
CCC restricts the scope to cases where the code is objectively
designed primarily for the purpose of committing an offense,
usually excluding dual-use devices [3, §72-§73].

First, it is important to note that COVERUP was not de-
signed primarily for the purpose of committing an offense.
While the main purpose of COVERUP is to protect privacy,
it can be used to conceal illegal activities. Second, can the
download of criminal information be considered an illegal



activity if the information is encrypted? Here we draw a legal
analogy to data protection law. Data relating to an identified
or identifiable person is considered personal data [13, Art.
2(a)], [24, Art. 4(1)]. If a person is identifiable or identified,
data protection law applies. However, if the personal data
are pseudonymized or anonymized, then data protection law
might not apply anymore because the (formerly identifiable
or identified) person cannot longer be identified.

Recital (83), Art. 6(4)(e), 32(1)(a) and 34(3)(a) of the new
General Data Protection Regulation!? stipulate that encryp-
tion renders the personal data unintelligible and mitigates the
risk of infringing the new regulation.

By applying this data protection principle to the encryp-
tion of data by COVERUP we can argue that the data pro-
vided by the ACN in the packets are not information because
the data is unintelligible. Not only does the passive partic-
ipant not have sufficient data to reassemble the packet to a
whole, but the data are encrypted in such manner that it is im-
possible to make any sense of it. At least from a theoretical
viewpoint the encryption of COVERUP cannot be breached.
We therefore conclude that the JavaScript code, with regard
to the passive participant, does not qualify as dual use device
even if it is used for illegal purpose. The data transmitted re-
main unintelligible and therefore do not qualify as informa-
tion. However, the JavaScript code, with regard to the active
participant, can be qualified as dual use device because the
encrypted and unintelligible data are decrypted and reassem-
bled to intelligible information.

Legal conclusion. We discussed the applicability of Art.
2 (illegal access), 4 (data interference), and 6 (misuse of de-
vice) CCC to COVERUP. We conclude that the provider of
the entry server is probably not illegally accessing the partic-
ipant’s browser by applying COVERUP; that the provider of
the entry server probably does not cause any malicious data
interference; and that the use of COVERUP with regard to
the passive participant does not qualify as misuse of device.
In regard to the reassembly of the packets to a meaningful
whole, if the information is illegal, COVERUP might qualify
as dual use device and fall under Art. 6 CCC. We conclude
that at least with regard to the risk of indictment pursuant to
Art. 6 CCC it seems advisable that the provider of the entry
server does not provide the JavaScript code for download.

D.2 Entry servers

A participant is dependent on Internet service providers ISP.
The question arises whether an (ISP) should be liable for ille-
gal Internet activities of its subscribers. In the following we
discuss legislation and case law on the ISP’s liability in two
different jurisdictions: the EU and the USA. For this discus-
sion it is important to differentiate among the various types
of ISPs, for instance access providers, hosting providers, and
content providers [72].

3Regulation (EU), applicable as of 25.5.2018

European union. In the European Union, liability of ISPs
has been regulated in the E-Commerce Directive [9]. Gen-
erally, providers shall not have any obligation to monitor the
information which they transmit or store, or to seek actively
facts or circumstances indicating illegal activity [9, Art. 15
(1)]. According to the directive, access providers acting as
“mere conduits” shall not be liable for the information trans-
mitted, on the condition that they do not initiate, select the
receiver of, or select or modify the information contained in
the transmission [9, Art. 12 (1)].'4 Caching providers (effi-
ciency transmitters) shall not be liable for the automatic, in-
termediate and temporary storage of information, on the con-
dition that they do not modify the information; comply with
access regulations and industry standards for updating the
information; do not interfere with the lawful use of technol-
ogy; and act expeditiously to remove information if removed
from the initial source [9, Art. 13 (1)]. Hosting providers
shall not be liable for the information stored on their servers,
on the condition that they are unaware of illegal activity or
information or acts expeditiously to remove or disable access
to the illegal information [9, Art. 14 (1)].

With regard to the obligations of a hosting provider, the
European Court of Justice decided in SABAM v Netlog!?
that, among other directives, the E-Commerce Directive pre-
cluded a national court from issuing an injunction against a
hosting service provider which requires it to install a system
for filtering (a) information which is stored on its servers by
its service users, (b) which applies indiscriminately to all of
those users; (c) as a preventative measure; (d) exclusively at
its expense; and (e) for an unlimited period; which is capable
of identifying IP-infringing content.

USA. Similarly, in the United States there are limita-
tions on liability relating to material online [1]. There are
statutory limitations for transitory communications (i.e. ac-
cess provider, “mere conduit”) [1, Section 512(a)], system
caching (i.e. storage for limited time) [1, Section 512(b)],
information residing on systems or networks at the direction
of users (i.e. hosting) [1, Section 512(c)], and information
location tools (i.e. search engines or hyperlinking) [1, Sec-
tion 512(d)].

With regard to the obligations of a hosting provider [1,
Section 512(c)], the United States Court of Appeals for the
Second Circuit, by referencing UMG Recordings, Inc. v.
Shelter Capital Partners LLC, 667 F.3d 1022 (9th Cir. 2011),
argued that “[t]he Court of Appeals affirmed [...] that the
website operator was entitled to safe harbor protection. With
respect to the actual knowledge provision, the panel declined
to ‘adopt [...] a broad conception of the knowledge require-
ment,” id. at 1038, holding instead that the safe harbor
‘[r]equir[es] specific knowledge of particular infringing ac-

14yWith regard to the German liability for interference (“Storerhaftung”)
according to Sommer unseres Lebens (I ZR 121/08), see also decision by
the ECJ in Mc Fadden (C- 484/14).

SECT C-360/10.



tivity, id. at 1037. The Court of Appeals reach[ed] the same
conclusion’ [..] noting that [w]e do not place the burden
of determining whether [materials] are actually illegal on a
service provider.’ Id. At 1038 (alterations in original) (quot-
ing Perfect 10, Inc. v. CCBIll LLC, 488 F.3d 1102, 1114 (9th
Cir. 2007))”. Hence, the 20 Circuit Court concluded, among
others, that 17 U.S.C. §512(c)(1)(A) requires knowledge or
awareness of facts or circumstances that indicate specific and
identifiable instances of infringement.

Legal conclusion. The entry server is probably not an
access provider, maybe a caching provider and presumably a
hosting provider. In the latter case two points seem relevant:
(i) by whom the information is stored on the entry server and
(ii) the entry server’s knowledge of any (illegal) activity.

First, depending on how the entry server’s webpage is set
up, the JavaScript code may be stored by the entry server
itself or by a third party. Only in the latter case does the
provider’s liability privilege apply, because if the JavaScript
code is stored on the entry server by the entry server it-
self, then it is neither an access, nor a caching nor a host-
ing provider, but probably a content provider (assuming that
the JavaScript code is qualified as content). The ISP liabil-
ity privilege does not apply to content providers. Second,
if the JavaScript code is stored by the entry server itself on
the entry server, then the entry server (its provider respec-
tively) obviously has knowledge of the content. The ISP li-
ability privilege should not apply. If the JavaScript code is
uploaded by a third party (as done in COVERUP) to the entry
server, and the entry server (its provider respectively) there-
fore has no knowledge about the content, then under EU and
US legislation and case law the entry server (its provider re-
spectively) should not be held liable for the JavaScript code.

E Estimator-assumptions

Definition 1 (Total variation over finite domain). Let X,Y
be two discrete distributions over a finite domain with a
joint domain Q. Then, the total variation d of X and Y is

d(X.Y):= 5 ¥aeallpx(a) — py(a))).

Lemma 1. Let X;,X,, be the Loading, respectively the Peri-
odic, measurement distribution of the passive user and Y;,Y),
the Loading respectively the Periodic measurement distribu-
tion of the active user, all with a joint Domain Q. Let further
be & be the total variation between X; and let Y; and 6, be
the total variation between X, and Y,. Then, for all Turing
machines A, if all the measurement samples are independent
(Al), Loading and Periodic measurements are independent
(AII), and the measured distributions represent the accurate
underlying distributions (AIII),

|Prb=1:b < A(w,wp),wi < X[",wp < X']

—Pr[b=1:b A(wi,wp),wy < Y[" s wp < Y)']| <ndj+m,

Proof. Let w <~ X denote n independent draws from a distri-
bution X. Let Prjw <~ X] =Pr[b=1:b < A(w),w < X] and

Priw; <~ X; Xwp, <= X,] = |Pr[b = 1: b« A(w;,wp),w; <
X;,wp < X,]. We conclude:

[Prlb=1:b < A(wi,wp),wr < X', wp < X]
—Prb=1:b < A(w,wp),wi < ¥/",wp < 1|

=|Priw; & X; Mw, & X,] — Priw; & ¥ Mw, <4 1,)|
AI n m n m

< |Prlw; <= X; Vwy <= Xp] —Pr[w; < Y, Vw, < Y]]
Al ' .

<n-|Prlw; < X)] — Prw; < Y|

. N
+m-|Prlw, < X,] —Prlw, < V]| < n-§+m-$,



