Privacy Loss Classes: The Central Limit Theorem in Differential Privacy

David Sommer, Sebastian Meiser, Esfandiar Mohammadi

EHzürich

Our Contribution / Outline

- Connect Differential Privacy Definitions
- Privacy Leakage under Independent Composition
 - Exact Formula for Gaussian Noise
- Comparison of mechanisms (Privacy Loss Classes)
 - e.g., Gaussian better than Laplacian Noise

Basics: Pure ε -Differential Privacy (ε - DP)

 $\Pr[M(D_0) \in S] = \sum_{o \in S} \Pr[M(D_0) = o]$

Privacy Loss Variable

Example: Additive noise

Privacy Loss Distribution (PLD)

 \mathcal{L} : + ∞ 0.69 0.41 -0.29 -0.69 -0.69 - ∞

- Different input-pairs D₀, D₁ can lead to different PLDs
 - In practice, often one pair of PLDs suffices

 (ε, δ) -Probabilistic Differential Privacy (PDP)

ɛ-Differential Privacy

Definition (informal)

With $\varepsilon, \delta \ge 0, M$ is (ε, δ) -PDP if $\Pr[\{o \mid \mathcal{L}_{M(D_0), M(D_1)}(o) > \varepsilon\} \in M(D_0)] \le \delta$ $\Pr[\{o \mid \mathcal{L}_{M(D_1), M(D_0)}(o) > \varepsilon\} \in M(D_1)] \le \delta$ (ε, δ) -Approximate Differential Privacy (ADP)

$$\delta(\varepsilon) = \text{PLD}(+\infty) + \sum_{y \ge \varepsilon} (\text{PLD}(y)^y)$$

ETH zürich

 (α, ε) -Rényi Differential Privacy (RDP)

$$\log \left(\underset{y \sim PLD}{\mathbb{E}} \left[(e^{y})^{\lambda} \right] \right)^{\frac{1}{\lambda}} = \frac{1}{\lambda} \ln \underset{o \sim M(D_{1})}{\mathbb{E}} \left[\left(\underset{Pr [M(D_{0}) = o]}{\Pr [M(D_{1}) = o]} \right)^{\lambda + 1} \right]$$
$$= \mathcal{D}_{\underbrace{\lambda + 1}{\alpha}} \left(M(D_{0}) | M(D_{1}) \right)$$
$$Definition (informal)$$
$$(\alpha, \varepsilon) \text{-RDP: } \forall D_{0}, D_{1} \text{: } \mathcal{D}_{\alpha} \left(M(D_{0}) | M(D_{1}) \right) \leq \varepsilon.$$

• PLD \Rightarrow RDP: $(\alpha, \mathcal{D}_{\alpha}(M(D_0)|M(D_1))_{\alpha \in \mathbb{N}}$

■ PLD \leftarrow RDP: (see paper) (

$RDP \iff \mathsf{PLD} \iff ADP$

ETH zürich

Independent Composition

$$\begin{aligned} \mathcal{L}_{(M(D_0),M'(D'_0)),(M(D_1),M'(D'_1))}(0,0') &= \ln \frac{\Pr[o \in M(D_0),o' \in M'(D'_0)]}{\Pr[o \in M(D_1),o' \in M'(D'_1)]} \\ &= \ln \frac{\Pr[o \in M(D_0)] \cdot \Pr[o' \in M'(D'_0)]}{\Pr[o \in M(D_1)] \cdot \Pr[o' \in M'(D'_1)]} \\ &= \ln \frac{\Pr[o \in M(D_0)]}{\Pr[o \in M(D_1)]} + \ln \frac{\Pr[o' \in M'(D'_0)]}{\Pr[o' \in M'(D'_1)]} \\ &= \mathcal{L}_{M(D_0),M(D_1)}(0) + \mathcal{L}_{M'(D'_0),M'(D'_1)}(0') \end{aligned}$$

Composition is Convolution of inner PLDs

ETH zürich

Privacy Loss Classes

 μ = mean(innerPLD) Convolution of innerPLD $\mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$ σ^2 = variance(innerPLD) Central Limit Theorem $PLD^{n}(+\infty) = 1 - [1 - PLD(+\infty)]^{n}$

n-invocations

Laplace Noise n = 1n = 32n=4Laplace Laplace Laplace $M(D_0)$ PLD PLD PLD - $M(D_1$ ····· Gauss ····· Gauss ····· Gauss 0 0 0

 $PLD(+\infty)$

- Privacy Loss Class $(\mu, \sigma^2, PLD(+\infty))$ characterises convergence
- Applicable to non-equal PLDs

EH zürich

TL;DR: Use Gaussian Noise! Gauss Privacy Loss, $\varepsilon = \frac{n}{\lambda}$ 2^{0} -Laplacian 2^{-64} Gaussian $\delta_{G^n}(\frac{n}{\lambda})$ Probability 2-128 $---- ADP, \lambda = 190 \\ ---- PDP, \lambda = 190$ 2^{-192} Х 100150200250500 n

- Gaussian half the variance
- Similar Privacy Loss Class $(\mu, \sigma^2, PLD(+\infty))$

 \Rightarrow higher utility than Laplacian at similar privacy guarantees

After ~100 compositions: use Gaussian noise

Example: 1D-Gaussian Mechanism

Exact Formula:

$$\sigma^{2} = \frac{1}{\nu^{2}}$$

$$\mu = \frac{\sigma^{2}}{2}$$

$$\delta_{ADP}(\varepsilon) = \frac{1}{2} \left[\operatorname{erfc} \left(\frac{\varepsilon - n\mu}{\sqrt{2n\sigma}} \right) - e^{\varepsilon} \cdot \operatorname{erfc} \left(\frac{\varepsilon + n\mu}{\sqrt{2n\sigma}} \right) \right]^{1}$$

- efficiently computable
 - gs_sf_log_erfc from GNU Scientific Library

¹Balle at al. *Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising*. ICML, 2018

 $\operatorname{erfc}(z)$

 $t^{-t^2} dt$

Summary

- Introduced Privacy Loss Distribution (PLD)
- (conditioned) Equivalence RDP, PLD, ADP
- 2 Composition for arbitary mechanisms
- Gaussian is better than Laplace
- CLT and the exact result for Gaussian
- ADP bounds based on CLT (see paper/ask)
- ADP Markov-bound (see paper)

ADP under Composition

- Distance bounds $PLD^n \Leftrightarrow \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$
- Berry-Esseen (absolute error)
 - $|F_n(x) \phi(x)| < C \cdot \frac{\rho}{\sigma^3 \sqrt{n}}$
 - Good for high number of compositions
- Nagaev (tail estimation)

PB: Meiser S, Mohammadi E. Tight on budget?: Tight bounds for r-fold approximate differential privacy. CCS'18.

Backup Slides

Refernces Pictures

- <u>https://www.worldtravelguide.net/wp-content/uploads/2018/06/shu-Europe-Sweden-Stockholm-613199033-Andrey-Shcherbukhin-2500x1045.jpg</u>
- <u>https://de.wiktionary.org/wiki/Datei:Snow_flake.svg</u>
- https://i2.wp.com/www.bhakari.com/wp-content/uploads/2016/02/Electric-heater-500x500.jpg
- https://i1.wp.com/www.fixofix.se/wp-content/uploads/2017/11/Radiator Standard-2.jpg?fit=500%2C500&ssl=1
- https://www.bathroomradiatorsuk.com/images/detailed/1/RA410.jpg
- <u>https://www.britishgas.co.uk/digital/business/assets/smarter-working/smart-metering/how-your-electricity-smart-meter-works/jcr_content/par/panel_container_0/par/bootstrap_accordion/par/image.img.jpg/1502201367102.jpg</u>
- https://blog.upad.co.uk/hs-fs/hub/292131/file-3913227893-jpg/blog-files/istock_000008512727xsmall-213x300.jpg?width=213&height=300&name=istock_000008512727xsmall-213x300.jpg
- https://www.pinclipart.com/maxpin/iRJxobR/
- https://www.researchgate.net/publication/333000550/figure/fig1/AS:757018751156224@1557498743030/Virtual-memoryusage-graph.ppm
- <u>https://vignette.wikia.nocookie.net/rickandmorty/images/4/41/Morty_Smith.jpg/revision/latest/scale-to-width-down/310?cb=20170217193441</u>
- Chanyaswad T, Liu C, Mittal P. RON-Gauss: Enhancing utility in non-interactive private data release. Proceedings on Privacy Enhancing Technologies. 2019 Jan 1;2019(1):26-46.

Basics: Pure ε -Differential Privacy (ε -DP)

Definition

A mechanism *M* is *\varepsilon*-*differentially private*, where $\varepsilon \ge 0$, if for all databases D_0 and D_1 with $D_0 \stackrel{1}{\approx} D_1$, and for all sets $S \subseteq [M]$, where [M] is the range of *M*, the following equation holds:

 $\Pr\left[M(D_0) \in S\right] \leq e^{\varepsilon} \cdot \Pr\left[M(D_1) \in S\right]$

• View on individual atomic events $o \in [M]$

 $\Pr\left[M(D_0) \in S\right] = \sum_{o \in S} \Pr\left[M(D_0) = o\right]$

 $\log \frac{\Pr[M(D_0) \in S]}{\Pr[M(D_1) \in S]} \le \varepsilon$

Privacy Loss Distribution (PLD)

 \mathcal{L} : + ∞ 0.69 0.41 - 0.29 - 0.69 - 0.69 - ∞ - ∞

- Different input-pairs D₀, D₁ can lead to different PLDs
 - In practice, often equal PLDs (sensitivity)

- PLD \Rightarrow RDP: $(\alpha, \mathcal{D}_{\alpha}(M(D_0)|M(D_1))_{\alpha \in \mathbb{N}}$
- PLD \leftarrow RDP: If $\mathcal{D}_{\lambda+1}(M(D_0)|M(D_1)) < \frac{1}{\lambda} \ln(c d^{\lambda} \lambda!)$ (with c, d > 0)
- With $+\infty$: Approximate-RDP

 $\lambda + 1 \rightarrow \alpha$

Rényi-Differential Privacy (RDP)

- PLD -> RDP: $(\alpha, \mathcal{D}_{\alpha}(M(D_0)|M(D_1))_{\alpha \in \mathbb{N}}$
- PLD <- RDP: If $\mathcal{D}_{\lambda+1}(M(D_0)|M(D_1)) < \frac{1}{\lambda} \ln(c d^{\lambda} \lambda!)$ (with c, d > 0) (

With $+\infty$: Approximate-RDP

(ε, δ) -Probabilistic Differential Privacy (PDP)

- Given an ε_0 , how to handle leftovers in PLD?
- We get a delta.
- This is PDP:

Definition (informal) With $\varepsilon, \delta \ge 0, M$ is (ε, δ) -PDP, if the total probability

mass of all atomic events *o* is $\Pr[\{o \mid \mathcal{L}_{M(D_0),M(D_1)}(o) > \varepsilon\} \in M(D_0)] \leq \delta$ $\Pr[\{o \mid \mathcal{L}_{M(D_1),M(D_0)}(o) > \varepsilon\} \in M(D_1)] \leq \delta$

Maybe explain (eps,delta) graphs here.

Gauss vs. Laplace Mechanism

- Show PLD
- Show variances
- Give intuition why Gauss has lower var (heavier tail)
- Show graph illustating negligibility.
- Make graph for same variance , that shows smaler eps.

Independent Composition

- Draw twice (joint distribution)
 - $(M(D_0), M'(D'_0))$ vs. $(M(D_1), M'(D'_1))$
 - $\Pr[o \in M(D_0), o' \in M(D'_0)] = \Pr[o \in M(D_0)] \cdot \Pr[o' \in M(D'_0)]$

$$\mathcal{L}_{(M(D_0),M'(D'_0)),(M(D_1),M'(D'_1))}(0,0') = \ln \frac{\Pr[o \in M(D_0),o' \in M(D'_0)]}{\Pr[o \in M(D_1),o' \in M(D'_1)]}$$
$$= \ln \frac{\Pr[o \in M(D_0)]}{\Pr[o \in M(D_1)]} + \ln \frac{\Pr[o' \in M(D'_0)]}{\Pr[o' \in M(D'_1)]}$$
$$= \mathcal{L}_{M(D_0),M(D_1)}(0) + \mathcal{L}_{M'(D'_0),M'(D'_1)}(0')$$

Composition of Mechanisms is <u>Convolution</u> of *inner*PLD (pic of inner PLD)

TL;DR: Use Gaussian Noise!

- After ~100 compositons: use Gaussian noise
- Gauss half the variance
- Same privacy loss class as Laplace.
- -> Gauss has higher utility than Laplace at similar privacy guarantees

Markov-ADP Bound

- Mironov: PDP bound based on Markov-bound
- Made better ADP bound by not over-approximating buckets
- Graph for illustration.
- Graph for showing superiority.

Dual PLD

Illustrate

Worst Case distributions

- Exist for certain problems
- (forward) our mechanism allows different outputs compute composition leakage exactly

Definition:

Definition

A mechanism *M* is ε -differentially private, where $\varepsilon \ge 0$, if for all databases D_0 and D_1 with $D_0 \stackrel{1}{\approx} D_1$, and for all sets $S \subseteq [M]$, where [M] is the range of *M*, the following equation holds:

 $\Pr[M(D_0) \in S] \leq e^{\varepsilon} \cdot \Pr[M(D_1) \in S]$